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ABSTRACT 
Internet of Things (IoT) is projected to connect billions of devices 
as they get smaller and cheaper. IoT devices range from low-end 
units to devices having powerful processors. Traditional operating 
systems are not able to fulfil the diverse requirements of 
heterogeneous IoT devices. The requirements of an OS for IoT 
devices need to be revisited to operate with minimal resources and 
at the same time cover a wide range of devices, thereby avoiding 
redundant development, and maintenance of devices.  This paper 
presents an analysis on such requirements and a comparative 
study of some current IoT operating systems. 
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1 INTRODUCTION 
IoT is a network of physical devices connected to each other 

enabling them to transfer data and communicate. Deployment of 
IoT devices provides tremendous opportunities and applications in 
various industries from consumer applications to large scale 
enterprises. There has been an exponential increase in the number 
of IoT devices. IoT is being scaled from smart houses to smart 
cities. Its applications include smart homes, connected vehicles, 
traffic monitoring, surveillance, garbage management, water 
supply, supply chain, to name few. It is reshaping entire industries 
and also being used for cost effective solutions. It is estimated that 
30 billion devices would be part of the IoT ecosystem, taking its 
market value to 7 trillion dollars by 2020 [6]. IoT devices have 
evolved from tiny sensors and now range all the way from 8-bit 
microcontrollers to high-end devices with powerful processors. 
Advancements in technology have led to devices becoming 
smaller and cheaper.  

Over the years, many networking protocols have been 
developed so that heterogeneous devices can communicate with 
each other. All these heterogeneous devices have diverse 
requirements when it comes to computing power, memory, energy 
consumption, etc. As compared to high-end devices, low-end 
devices have stringent constraints when it comes to energy 
consumption, processing power, and memory. At the same time, 
they are also supposed to fulfill reliability, efficient 
communication and real-time processing for their respective tasks. 

In a utopian situation, the capabilities of a traditional full-
fledged OS should be available for all types of IoT devices. The 
problem at hand is that current full-fledged operating systems 

have high minimum requirements, deeming them unfit for low-
end devices. Similarly, lightweight operating systems cannot 
harness the complete potential of high-end devices. Therefore, it 
is required to rethink the design of operating systems so as to 
provide features such as traditional multi-threading, hardware 
abstraction, dynamic memory management, real-time support, etc. 
for both high-end as well as low-end devices, without 
compromising complexity. Also, there is a need for Application 
Programming Interfaces (APIs) apart from bare metal 
programming to cater to the development for diverse IoT use 
cases. 

In this paper, we try to identify the key requirements and 
challenges for IoT operating systems and study how few of the 
current operating systems handle these challenges. IoT devices are 
application specific and are very dynamic in nature. The build 
equipment is very heterogeneous and the operating system best 
suited for these IoT devices must overcome these challenges and 
satisfy such diverse requirements. This paper studies three open 
source operating systems: Contiki, a dominant OS for low-power 
IoT devices; MANTIS OS (MOS), a multithreaded OS for 
Wireless Sensor Networks (WSNs); and RIOT, an OS which tries 
to match various software requirements of heterogeneous IoT 
devices. Each of these operating systems have their unique 
architecture as they were designed to cater to different device 
requirements. We look at the strengths and contributions of each 
of these operating systems and try and see whether any of them 
could serve as a perfect fit IoT OS. Although there are several 
closed source operating systems, this paper only considers open 
source solutions for IoT operating systems where standard APIs 
can be used and the OS can be ported to any device independent 
of hardware. 

The rest of the paper is structured as follows. Section 2 
gives a background on IoT. Section 2.1 talks about some of the 
challenges that IoT operating systems need to overcome and 
Section 2.2 presents some design characteristics that need to be 
considered for an IoT OS. Section 3 focuses on solutions provided 
by Contiki, MOS and RIOT and their features. Finally, the paper 
closes with conclusions in Section 4. 

2 BACKGROUND 
Among the many factors driving the growth of IoT devices, 

one of the primary factors is the cost. The device hardware price 
has come down and has made them more accessible. A lot of 
devices enable real time collection and analysis of data which can 
be used for decision making. Large data sets of such information 
is being used to improve upon the efficiency and predictions for 
organizations using machine learning. IoT have been categorized 
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into 3 different categories based on how these devices are used, 
who uses them and their functionality. 

• Consumer IoT: These constitute the mainstream IoT 
devices such as wearables gadgets, smart cars, 
appliances, security systems.  

• Commercial IoT: The medical devices, tracking 
systems, logistics control all such fall under commercial 
IoT devices. 

• Industrial IoT: These are used at scale as part of smart 
city ecosystem or large scale industrial devices. Water 
systems, Electric grids, wind turbines, manufacturing 
robots are could be considered as Industrial IoT. 

All these added utilities come with their own set of 
challenges and requirements. To deploy and get them to obtain the 
desired results, the challenges have to overcome. 

2.1 Challenges 
2.1.1 Resource Constraints. IoT devices have limited 

computing and memory capabilities. The amount of computing 
that can be done IoT devices is constrained because of the limited 
configuration of these devices. They can’t store or compute large 
information, and this could be a challenge in certain situations 
where computing and analysis need to be done in real time to 
make decisions. Most of the typical low-end IoT devices have 
very limited memory ranging from kilobytes to a few hundred 
megabytes. Likewise, the processors in these devices are not very 
powerful and often have low clock cycles.  

2.1.2 Connectivity. The very name of IoT suggests that 
IoT devices need to communicate with each other over the 
internet. Current models could be used for thousands of nodes or 
devices but when billions of devices are being added to the IoT 
ecosystem, no existing protocols could be extended to match the 
scale of IoT. Also, very often IoT devices are deployed at remote 
locations and traditional communication protocols and 
mechanisms may not work under such circumstances [7]. Devices 
connected using heterogeneous network technologies also need to 
be able to communicate with each other. 

2.1.3. Security and Privacy. IoT devices raise serious 
security concerns. Very often these devices have limited to no 
security mechanisms in place which leaves them vulnerable to 
malicious attacks. Because of the wide range of applications of 
IoT devices and their deployment everywhere, IoT hacks would 
be a threat to our privacy and wellbeing. Some IoT devices collect 
sensitive data and could fall into wrong hands. The reason for this 
is because these devices often lack the computational, storage 
capabilities and a powerful operating system to deploy any 
security solutions [8]. 

2.1.4. Energy constraints. Most IoT devices are essentially 
sensors which are low power devices and are energy efficient. 
Most IoT devices run on batteries and many of these might have 
to run on a single battery source for long periods of time [1]. Also, 
given the fact that IoT devices are going to be almost everywhere 
in the near future, global power efficiency is essential. Thus, 
operating systems for IoT must be able to adapt to the power 
saving features of the devices and provide features such as power 

saving mode. IoT operating systems must provide energy saving 
functions at the application level. 

2.1.5. Programmability. Many of the current IoT operating 
systems are not developer friendly and lack in providing a 
standard API (e.g. Portable Operating System Interface (POSIX), 
Standard Template Library (STL)). Although IoT hardware is 
heterogeneous, operating systems must bridge the gap between 
the heterogeneity and the programmability for developers. 
Developers must have an interface to harness the capabilities that 
each device has to offer to solve various complex problems. This 
would eliminate development redundancy and reduce 
maintenance costs. 

 
Despite these challenges, IOT devices are expected to 

satisfy certain fundamental requirements such as: 
• Reliability 
• Real-time behavior 
• Adaptive communication stack 

Probably the biggest challenge is to obtain a trade-off between 
performance, an API and memory constraints. 

2.2 Characteristics 
This subsection talks about some of the key OS design 

characteristics that have to be considered as they impact the 
potential of the OS. Fig. 1 below shows the typical architecture of 
an IoT OS. It consists of a hardware abstraction layer above the 
hardware which allows communication between the operating 
system software and the hardware, the device drivers layer, 
libraries, the communication stack, the kernel itself and finally the 
application layer that sits on top of these layers. 

 

 
Figure 1: Typical architecture stack of an IoT OS [5] 

 
2.2.1. Kernel. When it comes to OS design, the primary 

aspect is the kernel architecture. OS kernel architectures can be 
monolithic, layered or microkernel. Monolithic kernel architecture 
is the simplest of the lot, however it is a complex structure and 
lacks modularity. The other two architectures provide modularity. 
The advantage of the microkernel architecture is that only a 
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minimal number of functions run in the kernel modem, thereby 
increasing reliability as bugs in other components won’t result in 
system failure. Most of the low-end IoT devices do not have a 
Memory Management Unit (MMU). This results in stack and 
buffer overflows. Therefore, while choosing a kernel architecture, 
one has to identify the tradeoff between a more robust and flexible 
microkernel or a less complex and efficient monolithic kernel, or 
go for a hybrid approach altogether. 

2.2.2. Scheduler. An integral function of IoT devices is the 
real-time processing most of these devices are sensors which 
respond to information from the environment. The real-time 
functionality and energy efficiency of an OS is heavily dependent 
on the scheduler design. The scheduler must be able to handle 
tasks of various priority levels in real-time. Typically, there are 
two types of scheduler, them being either preemptive or non-
preemptive. An optimal scheduler design needs to be selected to 
satisfy the power saving needs of IoT devices. 

2.2.3. Programming Model. The processing power of an OS 
depends on the programming model. The programming language 
offered for application development and whether the operating 
system supports multi-threading are key aspects. Event-driven 
models seem to be more memory efficient as compared to 
multithreaded models. When it comes to programming languages, 
high level programming languages have a lot of established 
libraries and debugging tools to offer to aid in application 
development.  

2.2.4. Memory. As already mentioned several times above, 
IoT devices are low memory. Thus, memory management is 
integral in OS design for IoT devices. Both static allocation and 
dynamic allocation have their own pros and cons. Static allocation 
introduces some memory overhead and is less flexible whereas 
dynamic allocation leads to a more complex system.  

2.2.5. Network. As in can be seen in Fig. 1, the network 
stack is the central component of a typical IoT OS architecture. 
This is where the information that is communicated between 
devices is stored in the form of packets is handled. The network 
stack is responsible for transmitting the packets between the 
various layers. 

 
Operating systems can be broadly divided into two 

categories: 
• Event-driven: Most of WSN operating systems use the 

event driven approach. In a nutshell, in the event-driven 
model, the kernel consists of an infinite loop handling 
all events in the same context and these events run to 
completion. This approach is memory efficient and 
simple to implement, however it imposes a lot of 
restrictions when it comes to application development.  

• Multithreaded: Traditional operating systems like Linux 
follow the multithreaded approach where each thread 
runs in its own context and manages its own stack. This 
model requires a scheduler and a scheduling policy to 
carry out context switches, thereby contributing to 
runtime and memory overhead. 

3 SOLUTIONS 

In this section, we have a look at three open source operating 
systems for IoT devices and see what each of them bring to the 
table to tackle the challenges in the IoT ecosystem. 

3.1 MANTIS OS 
Multimodal system for Networks of In-situ wireless Sensors 

(MANTIS) is a multithreaded cross-platform embedded OS for 
wireless sensor networks. The key challenges for designing this 
multithreaded OS for sensors is similar to what we have earlier 
discussed, most important of them being severe resource 
constraints and limited energy lifetime [3]. 

Mantis OS is based on multithreaded preemption, executed 
using standard I/O synchronization and a network protocol stack. 
What stands out in MOS is that It manages to do all this in less 
than 500 bytes of RAM. It also provides cross platform support 
for sensors networks and personal computers as well. It provides 
tools for easily deploying and managing these sensor networks. 
Mantis OS also enables sensor network application developers to 
design and test applications before distribution and deployment on 
a live environment. It supports features such as multimodal 
prototyping, dynamic reprogramming and remote shells. 

 
Figure 2: MOS architecture which fits in < 500 bytes of RAM 
[3] 

MOS addresses the unique demands of sensor networks. 
Following are some key feature of Mantis OS: 

3.1.1. Memory efficiency. MOS is remarkably memory 
efficient. The kernel code size, scheduler and the network stack all 
together occupies less than 500 bytes of RAM. This permits 
sufficient space for multiple application threads to execute on 
severe memory constrained platforms. 

3.1.2. Power management. Mantis OS achieves energy 
efficiency through a sleep function, the semantics of which is 
identical to the UNIX sleep function. The parameter for this 
function is the duration for sleep and he thread system is shut 
down whenever there is no meaningful work to do, thereby saving 
energy. 

3.1.3. Flexible. Different layers can be flexibly implemented 
in different threads, or all layers in the stack can be implemented 
in one thread. The performance tradeoff is made in favor for 
flexibility. Also, the kernel is programmed in C, making it more 
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portable and execute on variety of platforms. Through it achieves 
code reusability, the entry barriers in terms of programming is 
low. 

3.1.4. Remote management. MOS provides the framework 
for prototyping sensor network applications and bridging the live 
deployed sensor networks and the internet. As discussed earlier, 
since MOS can test applications before deployment, it can save a 
lot of resources, thereby not resulting in any severe losses. This 
framework goes beyond just simulation. Its helps in development, 
application management and visualization of applications. Since 
sensors could be deployed in remote areas and the network could 
comprise of many nodes, it would be very convenient to 
reprogram these sensors or change calibrations remotely. 

3.1.5. Dynamic Reprogramming. Sensor networking can be 
dynamically reprogrammed by Mantis OS. Through this, we 
would be able to re-flash the entire OS, programming single 
threads, and change variables within these threads. Also, one can 
remotely debug running threads. It provides a remote login 
through which one can login to the network and inspect the 
memory of sensor nodes. These capabilities are implemented as 
system call libraries and is built into Mantis OS kernel. 

3.2 Contiki OS 
Initially designed as on OS for WSNs, Contiki is now also a 

popular OS for IoT devices. Contiki works well in heavily 
constrained devices. In general, operating systems require the 
complete binary image of the system to be present on a device. 
The binary image consists of the OS, system libraries, and the 
applications that run on top. One of the main features of Contiki is 
that of dynamic loading and unloading. Contiki allows the loading 
and unloading of applications at runtime. The advantage of this is 
twofold. Applications are much smaller than the entire binary 
image of the system and also the time taken to transfer only an 
application image is significantly less than the time taken to load 
the entire system binary [2].  

 Being event-driven, Contiki is able to provide 
concurrency without locks. This is because two event handlers 
will never run concurrently with respect to each other. Processes 
run to completion and all processes occupy same stack. Contiki 
also provides optional preemptive multithreading at application 
level. In some situations, event-driven models can lead to the CPU 
to be unresponsive (for example, in cryptographic calculations). 
To tackle such cases, Contiki provides a hybrid model where 
preemptive multithreading is provided as an application library 
which can be used by developers if and when required.  

Contiki OS consists of the kernel, libraries, the program 
loader and processes. All processes communicate through the 
kernel. There is no hardware abstraction layer. Rather, device 
drivers and applications communicate directly with hardware. 
Although Contiki does not contain a native function for power 
saving, applications can implement such a function when there are 
no events in the event queue. 

 

3.3 RIOT OS 
RIOT tries to bridge the gap between operating systems for 

WSNs and traditional full-fledged operating systems. It supports 
IoT devices a wide range of IoT devices ranging from 8-bit 
microcontrollers to powerful 32-bit processors. It aims to 
implement all open standards supporting IoT in a connected, 
secure and effective way [4]. 

RIOT is based on a microkernel architecture and supports 
multi-threading. It provides a TCP/IP network stack and adds 
support for C++ which helps as one can make use of powerful 
libraries. It uses static memory allocation in the kernel which 
helps it have a constant runtime. This constant runtime of the 
scheduler is achieved by using a fixed-sized circular linked list of 
threads. Fig. 3 gives an overview of the RIOT OS structure.  

RIOT solves important challenges for IoT and its main 
design objectives include things such as energy efficiency and low 
memory footprint. It supports modularity and API access. It is 
also independent of the underlying hardware its running on, 
making it flexible. All these factors along with a developer 
friendly API, make RIOT a very reliable OS. As it supports 
modularity, it makes it more robust against certain bugs limiting 
its effect to one component and not affecting the whole system. 

 

 
Figure 3: Overview of the RIOT OS structure [8] 

RIOT introduces a scheduler that works without any 
periodic events. When there are no pending or scheduled tasks, 
RIOT switches to the idle thread. Maximizing this time spent in 
sleep state improves its energy efficiency. Interrupts wake the 
system from the idle state. The kernel functions are not complex, 
thereby minimizing context switching, which also helps in making 
it more energy efficient. RIOT manages to build this efficient 
scheduler with a sophisticated architecture with a very low 
memory footprint requiring less than 5 Kbytes of ROM and less 
than 1.5 Kbytes of RAM. It uses the multi-threaded programming 
model with C code and common POSIX like API for all 
supporting hardware. So, one could use it to build software 
systems for heterogeneous IoT devices. It has partial POSIX 
compliance and is working towards full compliance. It is 
developer and user friendly with standard programming in C or 
C++. 
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Fig. 4 below compares the minimum memory requirements, 
programming language support, multi-threading support, 
modularity, real-time behavior, etc. RIOT has relatively low 
minimum requirements but at the same time, it manages to 
provide features such as C programming support, multi-threading, 
modularity and real-time support. Contiki being an OS for low-
end devices, has lower memory requirements. However, it only 
provides partial support when it comes to C programming, multi-
threading, modularity and real-time capabilities. 

 
Figure 4: Comparison of the key characteristics of Contiki, 
Tiny OS, Linux and RIOT [4] 

4 CONCLUSIONS 
In summary, we have studied the typical challenges that 

need to be overcome by an ideal IoT OS and the key design 
criteria that need to be kept in mind while designing an OS for 
IoT devices. We also performed a comparative study of three 
open source operating systems for IoT devices and saw the unique 
features that each of them have to offer.  

Because of its modular kernel design, RIOT provides better 
protection against bugs. Also, it’s the only one out of the lot to 
provide complete preemptive multithreading support. The 
dynamic loading and unloading of modules through remote 
deployment is one key advantage of Contiki. The ability of MOS 
to fit the entire OS < 500 bytes of memory and the sleep function 
are what stand out. So, each of these operating systems have 
certain key features as their strong sites but they only succeed 
partly in meeting all the requirements of IoT ecosystem. To 
conclude, it can be said that RIOT is the most promising among 
the three but more research is required in the field to come up 
with a kind of “unifying” OS that meets the wide spectrum of 
requirements of the IoT ecosystem and can serve as a “go-to” OS 
for IoT. 
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