
Ubiquitous Sensing: Towards the future of IoT operating systems

 Aniket Shenoy
Indiana University

Bloomington, Indiana
ashenoy@iu.edu

Abhinash Tummala
Indiana University

Bloomington, Indiana
abhitumm@iu.edu

ABSTRACT
Internet of Things (IoT) is projected to connect billions of devices
as they get smaller and cheaper. IoT devices range from low-end
units to devices having powerful processors. Traditional operating
systems are not able to fulfil the diverse requirements of
heterogeneous IoT devices. The requirements of an OS for IoT
devices need to be revisited to operate with minimal resources and
at the same time cover a wide range of devices, thereby avoiding
redundant development, and maintenance of devices. This paper
presents an analysis on such requirements and a comparative
study of some current IoT operating systems.

KEYWORDS
Operating System (OS); Internet of Things (IoT); MANTIS OS
(MOS); Contiki; RIOT

1 INTRODUCTION
IoT is a network of physical devices connected to each other

enabling them to transfer data and communicate. Deployment of
IoT devices provides tremendous opportunities and applications in
various industries from consumer applications to large scale
enterprises. There has been an exponential increase in the number
of IoT devices. IoT is being scaled from smart houses to smart
cities. Its applications include smart homes, connected vehicles,
traffic monitoring, surveillance, garbage management, water
supply, supply chain, to name few. It is reshaping entire industries
and also being used for cost effective solutions. It is estimated that
30 billion devices would be part of the IoT ecosystem, taking its
market value to 7 trillion dollars by 2020 [6]. IoT devices have
evolved from tiny sensors and now range all the way from 8-bit
microcontrollers to high-end devices with powerful processors.
Advancements in technology have led to devices becoming
smaller and cheaper.

Over the years, many networking protocols have been
developed so that heterogeneous devices can communicate with
each other. All these heterogeneous devices have diverse
requirements when it comes to computing power, memory, energy
consumption, etc. As compared to high-end devices, low-end
devices have stringent constraints when it comes to energy
consumption, processing power, and memory. At the same time,
they are also supposed to fulfill reliability, efficient
communication and real-time processing for their respective tasks.

In a utopian situation, the capabilities of a traditional full-
fledged OS should be available for all types of IoT devices. The
problem at hand is that current full-fledged operating systems

have high minimum requirements, deeming them unfit for low-
end devices. Similarly, lightweight operating systems cannot
harness the complete potential of high-end devices. Therefore, it
is required to rethink the design of operating systems so as to
provide features such as traditional multi-threading, hardware
abstraction, dynamic memory management, real-time support, etc.
for both high-end as well as low-end devices, without
compromising complexity. Also, there is a need for Application
Programming Interfaces (APIs) apart from bare metal
programming to cater to the development for diverse IoT use
cases.

In this paper, we try to identify the key requirements and
challenges for IoT operating systems and study how few of the
current operating systems handle these challenges. IoT devices are
application specific and are very dynamic in nature. The build
equipment is very heterogeneous and the operating system best
suited for these IoT devices must overcome these challenges and
satisfy such diverse requirements. This paper studies three open
source operating systems: Contiki, a dominant OS for low-power
IoT devices; MANTIS OS (MOS), a multithreaded OS for
Wireless Sensor Networks (WSNs); and RIOT, an OS which tries
to match various software requirements of heterogeneous IoT
devices. Each of these operating systems have their unique
architecture as they were designed to cater to different device
requirements. We look at the strengths and contributions of each
of these operating systems and try and see whether any of them
could serve as a perfect fit IoT OS. Although there are several
closed source operating systems, this paper only considers open
source solutions for IoT operating systems where standard APIs
can be used and the OS can be ported to any device independent
of hardware.

The rest of the paper is structured as follows. Section 2
gives a background on IoT. Section 2.1 talks about some of the
challenges that IoT operating systems need to overcome and
Section 2.2 presents some design characteristics that need to be
considered for an IoT OS. Section 3 focuses on solutions provided
by Contiki, MOS and RIOT and their features. Finally, the paper
closes with conclusions in Section 4.

2 BACKGROUND
Among the many factors driving the growth of IoT devices,

one of the primary factors is the cost. The device hardware price
has come down and has made them more accessible. A lot of
devices enable real time collection and analysis of data which can
be used for decision making. Large data sets of such information
is being used to improve upon the efficiency and predictions for
organizations using machine learning. IoT have been categorized

2

into 3 different categories based on how these devices are used,
who uses them and their functionality.

• Consumer IoT: These constitute the mainstream IoT
devices such as wearables gadgets, smart cars,
appliances, security systems.

• Commercial IoT: The medical devices, tracking
systems, logistics control all such fall under commercial
IoT devices.

• Industrial IoT: These are used at scale as part of smart
city ecosystem or large scale industrial devices. Water
systems, Electric grids, wind turbines, manufacturing
robots are could be considered as Industrial IoT.

All these added utilities come with their own set of
challenges and requirements. To deploy and get them to obtain the
desired results, the challenges have to overcome.

2.1 Challenges
2.1.1 Resource Constraints. IoT devices have limited

computing and memory capabilities. The amount of computing
that can be done IoT devices is constrained because of the limited
configuration of these devices. They can’t store or compute large
information, and this could be a challenge in certain situations
where computing and analysis need to be done in real time to
make decisions. Most of the typical low-end IoT devices have
very limited memory ranging from kilobytes to a few hundred
megabytes. Likewise, the processors in these devices are not very
powerful and often have low clock cycles.

2.1.2 Connectivity. The very name of IoT suggests that
IoT devices need to communicate with each other over the
internet. Current models could be used for thousands of nodes or
devices but when billions of devices are being added to the IoT
ecosystem, no existing protocols could be extended to match the
scale of IoT. Also, very often IoT devices are deployed at remote
locations and traditional communication protocols and
mechanisms may not work under such circumstances [7]. Devices
connected using heterogeneous network technologies also need to
be able to communicate with each other.

2.1.3. Security and Privacy. IoT devices raise serious
security concerns. Very often these devices have limited to no
security mechanisms in place which leaves them vulnerable to
malicious attacks. Because of the wide range of applications of
IoT devices and their deployment everywhere, IoT hacks would
be a threat to our privacy and wellbeing. Some IoT devices collect
sensitive data and could fall into wrong hands. The reason for this
is because these devices often lack the computational, storage
capabilities and a powerful operating system to deploy any
security solutions [8].

2.1.4. Energy constraints. Most IoT devices are essentially
sensors which are low power devices and are energy efficient.
Most IoT devices run on batteries and many of these might have
to run on a single battery source for long periods of time [1]. Also,
given the fact that IoT devices are going to be almost everywhere
in the near future, global power efficiency is essential. Thus,
operating systems for IoT must be able to adapt to the power
saving features of the devices and provide features such as power

saving mode. IoT operating systems must provide energy saving
functions at the application level.

2.1.5. Programmability. Many of the current IoT operating
systems are not developer friendly and lack in providing a
standard API (e.g. Portable Operating System Interface (POSIX),
Standard Template Library (STL)). Although IoT hardware is
heterogeneous, operating systems must bridge the gap between
the heterogeneity and the programmability for developers.
Developers must have an interface to harness the capabilities that
each device has to offer to solve various complex problems. This
would eliminate development redundancy and reduce
maintenance costs.

Despite these challenges, IOT devices are expected to

satisfy certain fundamental requirements such as:
• Reliability
• Real-time behavior
• Adaptive communication stack

Probably the biggest challenge is to obtain a trade-off between
performance, an API and memory constraints.

2.2 Characteristics
This subsection talks about some of the key OS design

characteristics that have to be considered as they impact the
potential of the OS. Fig. 1 below shows the typical architecture of
an IoT OS. It consists of a hardware abstraction layer above the
hardware which allows communication between the operating
system software and the hardware, the device drivers layer,
libraries, the communication stack, the kernel itself and finally the
application layer that sits on top of these layers.

Figure 1: Typical architecture stack of an IoT OS [5]

2.2.1. Kernel. When it comes to OS design, the primary

aspect is the kernel architecture. OS kernel architectures can be
monolithic, layered or microkernel. Monolithic kernel architecture
is the simplest of the lot, however it is a complex structure and
lacks modularity. The other two architectures provide modularity.
The advantage of the microkernel architecture is that only a

 3

minimal number of functions run in the kernel modem, thereby
increasing reliability as bugs in other components won’t result in
system failure. Most of the low-end IoT devices do not have a
Memory Management Unit (MMU). This results in stack and
buffer overflows. Therefore, while choosing a kernel architecture,
one has to identify the tradeoff between a more robust and flexible
microkernel or a less complex and efficient monolithic kernel, or
go for a hybrid approach altogether.

2.2.2. Scheduler. An integral function of IoT devices is the
real-time processing most of these devices are sensors which
respond to information from the environment. The real-time
functionality and energy efficiency of an OS is heavily dependent
on the scheduler design. The scheduler must be able to handle
tasks of various priority levels in real-time. Typically, there are
two types of scheduler, them being either preemptive or non-
preemptive. An optimal scheduler design needs to be selected to
satisfy the power saving needs of IoT devices.

2.2.3. Programming Model. The processing power of an OS
depends on the programming model. The programming language
offered for application development and whether the operating
system supports multi-threading are key aspects. Event-driven
models seem to be more memory efficient as compared to
multithreaded models. When it comes to programming languages,
high level programming languages have a lot of established
libraries and debugging tools to offer to aid in application
development.

2.2.4. Memory. As already mentioned several times above,
IoT devices are low memory. Thus, memory management is
integral in OS design for IoT devices. Both static allocation and
dynamic allocation have their own pros and cons. Static allocation
introduces some memory overhead and is less flexible whereas
dynamic allocation leads to a more complex system.

2.2.5. Network. As in can be seen in Fig. 1, the network
stack is the central component of a typical IoT OS architecture.
This is where the information that is communicated between
devices is stored in the form of packets is handled. The network
stack is responsible for transmitting the packets between the
various layers.

Operating systems can be broadly divided into two

categories:
• Event-driven: Most of WSN operating systems use the

event driven approach. In a nutshell, in the event-driven
model, the kernel consists of an infinite loop handling
all events in the same context and these events run to
completion. This approach is memory efficient and
simple to implement, however it imposes a lot of
restrictions when it comes to application development.

• Multithreaded: Traditional operating systems like Linux
follow the multithreaded approach where each thread
runs in its own context and manages its own stack. This
model requires a scheduler and a scheduling policy to
carry out context switches, thereby contributing to
runtime and memory overhead.

3 SOLUTIONS

In this section, we have a look at three open source operating
systems for IoT devices and see what each of them bring to the
table to tackle the challenges in the IoT ecosystem.

3.1 MANTIS OS
Multimodal system for Networks of In-situ wireless Sensors

(MANTIS) is a multithreaded cross-platform embedded OS for
wireless sensor networks. The key challenges for designing this
multithreaded OS for sensors is similar to what we have earlier
discussed, most important of them being severe resource
constraints and limited energy lifetime [3].

Mantis OS is based on multithreaded preemption, executed
using standard I/O synchronization and a network protocol stack.
What stands out in MOS is that It manages to do all this in less
than 500 bytes of RAM. It also provides cross platform support
for sensors networks and personal computers as well. It provides
tools for easily deploying and managing these sensor networks.
Mantis OS also enables sensor network application developers to
design and test applications before distribution and deployment on
a live environment. It supports features such as multimodal
prototyping, dynamic reprogramming and remote shells.

Figure 2: MOS architecture which fits in < 500 bytes of RAM
[3]

MOS addresses the unique demands of sensor networks.
Following are some key feature of Mantis OS:

3.1.1. Memory efficiency. MOS is remarkably memory
efficient. The kernel code size, scheduler and the network stack all
together occupies less than 500 bytes of RAM. This permits
sufficient space for multiple application threads to execute on
severe memory constrained platforms.

3.1.2. Power management. Mantis OS achieves energy
efficiency through a sleep function, the semantics of which is
identical to the UNIX sleep function. The parameter for this
function is the duration for sleep and he thread system is shut
down whenever there is no meaningful work to do, thereby saving
energy.

3.1.3. Flexible. Different layers can be flexibly implemented
in different threads, or all layers in the stack can be implemented
in one thread. The performance tradeoff is made in favor for
flexibility. Also, the kernel is programmed in C, making it more

4

portable and execute on variety of platforms. Through it achieves
code reusability, the entry barriers in terms of programming is
low.

3.1.4. Remote management. MOS provides the framework
for prototyping sensor network applications and bridging the live
deployed sensor networks and the internet. As discussed earlier,
since MOS can test applications before deployment, it can save a
lot of resources, thereby not resulting in any severe losses. This
framework goes beyond just simulation. Its helps in development,
application management and visualization of applications. Since
sensors could be deployed in remote areas and the network could
comprise of many nodes, it would be very convenient to
reprogram these sensors or change calibrations remotely.

3.1.5. Dynamic Reprogramming. Sensor networking can be
dynamically reprogrammed by Mantis OS. Through this, we
would be able to re-flash the entire OS, programming single
threads, and change variables within these threads. Also, one can
remotely debug running threads. It provides a remote login
through which one can login to the network and inspect the
memory of sensor nodes. These capabilities are implemented as
system call libraries and is built into Mantis OS kernel.

3.2 Contiki OS
Initially designed as on OS for WSNs, Contiki is now also a

popular OS for IoT devices. Contiki works well in heavily
constrained devices. In general, operating systems require the
complete binary image of the system to be present on a device.
The binary image consists of the OS, system libraries, and the
applications that run on top. One of the main features of Contiki is
that of dynamic loading and unloading. Contiki allows the loading
and unloading of applications at runtime. The advantage of this is
twofold. Applications are much smaller than the entire binary
image of the system and also the time taken to transfer only an
application image is significantly less than the time taken to load
the entire system binary [2].

 Being event-driven, Contiki is able to provide
concurrency without locks. This is because two event handlers
will never run concurrently with respect to each other. Processes
run to completion and all processes occupy same stack. Contiki
also provides optional preemptive multithreading at application
level. In some situations, event-driven models can lead to the CPU
to be unresponsive (for example, in cryptographic calculations).
To tackle such cases, Contiki provides a hybrid model where
preemptive multithreading is provided as an application library
which can be used by developers if and when required.

Contiki OS consists of the kernel, libraries, the program
loader and processes. All processes communicate through the
kernel. There is no hardware abstraction layer. Rather, device
drivers and applications communicate directly with hardware.
Although Contiki does not contain a native function for power
saving, applications can implement such a function when there are
no events in the event queue.

3.3 RIOT OS
RIOT tries to bridge the gap between operating systems for

WSNs and traditional full-fledged operating systems. It supports
IoT devices a wide range of IoT devices ranging from 8-bit
microcontrollers to powerful 32-bit processors. It aims to
implement all open standards supporting IoT in a connected,
secure and effective way [4].

RIOT is based on a microkernel architecture and supports
multi-threading. It provides a TCP/IP network stack and adds
support for C++ which helps as one can make use of powerful
libraries. It uses static memory allocation in the kernel which
helps it have a constant runtime. This constant runtime of the
scheduler is achieved by using a fixed-sized circular linked list of
threads. Fig. 3 gives an overview of the RIOT OS structure.

RIOT solves important challenges for IoT and its main
design objectives include things such as energy efficiency and low
memory footprint. It supports modularity and API access. It is
also independent of the underlying hardware its running on,
making it flexible. All these factors along with a developer
friendly API, make RIOT a very reliable OS. As it supports
modularity, it makes it more robust against certain bugs limiting
its effect to one component and not affecting the whole system.

Figure 3: Overview of the RIOT OS structure [8]

RIOT introduces a scheduler that works without any
periodic events. When there are no pending or scheduled tasks,
RIOT switches to the idle thread. Maximizing this time spent in
sleep state improves its energy efficiency. Interrupts wake the
system from the idle state. The kernel functions are not complex,
thereby minimizing context switching, which also helps in making
it more energy efficient. RIOT manages to build this efficient
scheduler with a sophisticated architecture with a very low
memory footprint requiring less than 5 Kbytes of ROM and less
than 1.5 Kbytes of RAM. It uses the multi-threaded programming
model with C code and common POSIX like API for all
supporting hardware. So, one could use it to build software
systems for heterogeneous IoT devices. It has partial POSIX
compliance and is working towards full compliance. It is
developer and user friendly with standard programming in C or
C++.

 5

Fig. 4 below compares the minimum memory requirements,
programming language support, multi-threading support,
modularity, real-time behavior, etc. RIOT has relatively low
minimum requirements but at the same time, it manages to
provide features such as C programming support, multi-threading,
modularity and real-time support. Contiki being an OS for low-
end devices, has lower memory requirements. However, it only
provides partial support when it comes to C programming, multi-
threading, modularity and real-time capabilities.

Figure 4: Comparison of the key characteristics of Contiki,
Tiny OS, Linux and RIOT [4]

4 CONCLUSIONS
In summary, we have studied the typical challenges that

need to be overcome by an ideal IoT OS and the key design
criteria that need to be kept in mind while designing an OS for
IoT devices. We also performed a comparative study of three
open source operating systems for IoT devices and saw the unique
features that each of them have to offer.

Because of its modular kernel design, RIOT provides better
protection against bugs. Also, it’s the only one out of the lot to
provide complete preemptive multithreading support. The
dynamic loading and unloading of modules through remote
deployment is one key advantage of Contiki. The ability of MOS
to fit the entire OS < 500 bytes of memory and the sleep function
are what stand out. So, each of these operating systems have
certain key features as their strong sites but they only succeed
partly in meeting all the requirements of IoT ecosystem. To
conclude, it can be said that RIOT is the most promising among
the three but more research is required in the field to come up
with a kind of “unifying” OS that meets the wide spectrum of
requirements of the IoT ecosystem and can serve as a “go-to” OS
for IoT.

REFERENCES
[1] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, T. C. Schmidt, "OS for the IoT—

Goals challenges and solutions", Proc. WISG, pp. 1-6, 2013.
[2] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—A lightweight and flexible

operating system for tiny networked sensors,” in Proc. 29th Annu. IEEE Int.
Conf. Local Comput. Netw., 2004, pp. 455–462.

[3] S.Bhatti, J.Carlson, H.Dai, J.Deng, J.Rose, A.Sheth, B. Shucker, C. Gruenwald,
A. Torgerson, and R. Han. Mantis os: An embedded multithreaded operating
sys- tem for wireless micro sensor platforms. ACM/Kluwer Mobile Networks &
Applications (MONET), Special Issue on Wireless Sensor Networks, 10(4):563–
579, August 2005.

[4] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt, “RIOT OS:
Towards an OS for the Internet of Things,” in Proc. IEEE Conf. INFOCOM
WKSHPS, 2013, pp. 79–80.

[5] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes. Operating Systems for Low-
End Devices in the Internet of Things: a Survey. IEEE Internet of Things
Journal, PP(99):1–1, 2015.

[6] Internet of things. 2017. WikipediA: the Free Encyclopedia. Retrieved from
https://en.wikipedia.org/wiki/Internet_of_things

[7] A. Benafa, ‘Three Major Challenges Facing IoT’, 2017. [Online]. Available:
https://iot.ieee.org/newsletter/march-2017/three-major-challenges-facing-iot

[8] B. Dickson, ‘4 Major Technical Challenges Facing IoT Developers’, 2016.
[Online]. Available: https://www.sitepoint.com/4-major-technical-challenges-
facing-iot-developers/

[8] RIOT OS - An OS for the IoT, 2012. [Online]. Available: http://www.riot-os.org

